# 台灣科技大學 <br> 電子工程系 <br> 91～97學年度 <br> 工程數學考古題 

## 國立臺滩科技大學

## 九十一學年度碩士班招生考試試題

系所組別：電子工程系乙一組，電子工程系乙二組，電子工程系乙三組，電子工程系丙組科 目：工程數學

## （總分 100 分）

1．$(15 \%)$ Solve $4 y^{\prime \prime}+4\left(e^{x}-1\right) y^{\prime}+e^{2 x} y=0$
Note：Let $t=(1 / 2) x$

2．$(10 \%)$ Solve $y^{\prime \prime}+4 y=3 \delta(t-2) ; y(0)=3, y^{-}(0)=0$

3．$(15 \%)$ Show

$$
\left|\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
\alpha & \beta & \gamma & \delta & \varepsilon \\
\alpha^{2} & \beta^{2} & \gamma^{2} & \delta^{2} & \varepsilon^{2} \\
\alpha^{3} & \beta^{3} & \gamma^{3} & \delta^{3} & \varepsilon^{3} \\
\alpha^{4} & \beta^{4} & \gamma^{4} & \delta^{4} & \varepsilon^{4}
\end{array}\right| \quad \begin{aligned}
& \\
& \\
& \\
& (\gamma-\alpha-\beta)(\gamma-\alpha)(\delta-\alpha)(\varepsilon-\alpha)(\varepsilon-\beta) \\
& (\delta-\gamma)(\varepsilon-\gamma) \\
& (\varepsilon-\delta)
\end{aligned}
$$

4．$(10 \%)$ Use Gram－Schmidt process to find three orthonomal vectors from
$v_{1}=\left[\begin{array}{l}1 \\ 7 \\ 1 \\ 7\end{array}\right],{ }_{2}=\left[\begin{array}{l}0 \\ 7 \\ 2 \\ 7\end{array}\right] \quad v_{3}=\left[\begin{array}{l}1 \\ 8 \\ 1 \\ 6\end{array}\right]$

5．$(10 \%)$ Invert the $Z$ transform $X(z)=1 /\left(1-a z^{-1}\right)^{2} \quad,|z|>a$ ．

6．（ $15 \%$ ）Given a joint density function $f(x, y)$ ．Let $f(x, y)=x\left(1+3 y^{2}\right) / 4$ for $0<x<2$ ， $0<y<1$ and $f(x, y)=0$ elsewhere．Find its marginal densities and the conditional density $f(x \mid y)$ ．

7．（ $10 \%$ ）Find
（a）$\oint_{c} \mathrm{~F} \cdot \mathrm{dR}, \mathrm{F}=\langle\mathrm{x}, \mathrm{y},-\mathrm{z}\rangle, \mathrm{C}$ the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=4, \mathrm{z}=0$ ．
（b） $\iint_{2} f(x, y, z) d \sigma$ ，where $f(x, y, z)=y, \sum$ the part of cylinder $z=x^{2}$ for $0<x<2$ ， $0<y<3$ ．

8．$(15 \%)$ Compute $\oint_{\Gamma} f(z) d z$ ，where $f(z)=(2 j z-\sin z) /\left(z^{3}+z\right)$ and $\Gamma$ is a closed path that enclosed $0, \mathrm{j}$ ，and -j ．
Note： $\int \sqrt{x^{2}+a^{2}} d x=(1 / 2)\left[x \sqrt{x^{2}+a^{2}}+a^{2} \ln \left(x+\sqrt{x^{2}+a^{2}}\right)\right]$


## 圈立囊愣科技大學

九十二䒵年度碩士班招生考試試題
系所组別：電子工程系碩士班乙一組，乙二組，乙三組，丙組科 目：工程數学

## 鴊分 100 分

（1）Solve $t y^{\prime \prime}+(4 t-2) y^{\prime}-4 y=0 \quad y(0)=1$ ．Furthermore if $y(0)$ is not known．Solve the differential equation again．（ $12 \%$ ）
（2）Let $f(x)$ be integrable in $[-L, L]$ ．If $f(x)$ can be approximately represented as $a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{3 n \pi x}{L}\right)+b_{n} \sin \left(\frac{5 n \pi x}{L}\right)$ find the coefficients $a_{0}, a_{n}$ and $b_{n} .(10 \%)$
（3）Assume that A，$\tau$ and $f_{c}$ are constants $f_{c}=10 M$ ，a signal $f(t)=A \tau \frac{\sin ^{2} \pi \tau}{t^{2} \tau^{2}} \cos 2 \pi f_{c} t$ ，find the energy of the signal．$(8 \%)$
（4）A vector field $\vec{V}=x z \hat{j}$ and a surface $z=4-y^{2}$ cut off by the planes $x=0, z=0$ and $y=x$ as shown in figure below．If $c=c_{1}+c_{2}+c_{3}$
（1）find $\oint_{c} \bar{V} \cdot d \bar{R}$ by Line integral．（8\％）
（2）Solve（1）again by appling the stokes＇s Theorem．（ $12 \%$ ）


5．Determine whether the following set of vectors is a subspace of $\mathbf{R}^{u}$ for the appropriate $n$ ．
（a）$S$ consists of all vectors（ $2 x, 0,0,0,0,3 y$ ）in $\mathbf{R}^{6}$ ．（ 10 pts ）
（b）$S$ consists of all vectors $(x, 1, y)$ in $\mathbf{R}^{3}$ ．（10pts）

6．Find a fundamental matrix for the system $X^{-}=A X$ with $A$ the giving matrix．（10pts）
$\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]$
7．Find $\oint_{\Gamma} f(z) d z$ ，where $f(z)=z^{2} /(z+1)^{2}(z+3 i)$ and $\Gamma$ is the circle of radius 9 about -2 i ．（ 10 pts ）

8．Show that $u=\sin x \cdot \cosh y$ satisfies the Laplace equation．（10pts）

## 國立囊灤科技大學

九十三學年度碩士班考試試題

```
系所組別：電子工程系乙一組，電子工程系乙二組，電子工程系乙三組，電子工程系丙組
```科 目：工程數學

總分 100 分
（1）Solve
\[
y^{\prime \prime}+9 y=\frac{1}{4} \csc 3 x \text { and } x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-k^{2}\right) y=0
\]
where k is a constant（13 分）
（2）Prove Green＇s Theorem（12 分）
\[
\begin{align*}
& \text { (3) } \frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0,0<\theta<\pi, 0<\mathrm{r}<\mathrm{c} \\
& \mathrm{u}(\mathrm{c}, \theta)=\mathrm{c}_{0} \quad, 0<\theta<\pi \\
& \mathrm{u}(\mathrm{r}, 0)=0 \quad, \mathrm{u}(\mathrm{r}, \pi)=0,0<\mathrm{r}<\mathrm{c} \\
& \mathrm{u}(0, \theta)<\infty \quad \text { (13 分 }) \tag{13分}
\end{align*}
\]

\title{
（4）\(\vec{F}=x y \hat{i}+y^{2} z \hat{j}+z^{3} \hat{k}\) evaluate \(\iint_{s}(\vec{F} \cdot \hat{n}) d s\)
} the unit cube defined by \(0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1\)
where s is

國立臺響科技大學
九十三學年度碩士班考試試題
系所組別：電子工程系乙一組，電子工程系乙二組，電子工程系乙三組，電子工程系丙組科 目：工程數學

5．Find the Laplace Transform of
\(f(t)=\left\{\begin{array}{ccc}-2 & \text { for } & 0 \leq t<1 \\ 0 & \text { for } & 1 \leq t<2 \\ 3 e^{t}+1 & \text { for } & t \geq 2\end{array}\right.\)

6．Find a basis for \(S\) ，where \(S\) consists of vectors in the plane \(x-y+1=1\)
（10 分）

7．Solve the system \(X^{\prime}=A X+H\) ，where
\(\mathrm{A}=\left[\begin{array}{cc}1 & -10 \\ -1 & 4\end{array}\right], \mathrm{H}=\left[\begin{array}{c}e^{t} \\ e^{3 t}\end{array}\right]\)

8．Find the inverse Fourier Transform of
\(e^{-2|w+2|} \cos (3 w+6)\)

\section*{國立䯧浩科技大學 \\ 九十四學年度碩士班招生考試試題}

\section*{系所組別：電子工程系碩士班乙一組}

科 目：工程數學
※総分為 100 分
1．（6\％）Find the inverse of the block matrix given by
\[
\left[\begin{array}{cc}
0 & \mathbf{I} \\
-\mathbf{I} & \mathbf{G}
\end{array}\right]
\]
where \(\mathbf{0}\) is an \(n \times n\) zero matrix， \(\mathbf{I}\) is an \(n \times n\) identity matrix，and \(\mathbf{G}\) is an \(n \times n\) invertible matrix．

2．（ \(16 \%\) ）Let a \(6 \times 6\) matrix \(\mathbf{C}\) be defined as
\[
\mathbf{C}=\mathbf{I}+\mathbf{J}
\]
where \(I\) is a \(6 \times 6\) identity matrix and
\[
\mathbf{J}=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\]
（a）（ \(10 \%\) ）Determine the nullspace of \(\mathbf{C}\) and find its dimension，where the nullspace of \(\mathbf{C}\) is define as \(\left\{x \mid C x=0, x \in \mathcal{R}^{6}\right\}\) ．
（b）\((6 \%)\) Is it true that \(\mathbf{C x}=\mathbf{b}\) has a solution for all \(\mathbf{b} \in \mathcal{R}^{6}\) ？Briefly explain your answer．
3．（ \(16 \%\) ）Suppose \(\mathbf{A}\) is a \(3 \times 3\) matrix with eigenvalues \(1,2,3\) ，then
（a）（3\％）Is \(\mathbf{A}\) diagonalizable？Briefly explain your answer．
（b）\((3 \%)\) Determine the eigenvalues of \(2 A^{-1}+I\) ．
（c）\((3 \%)\) Determine the determinant of \(\mathbf{A}+\mathbf{I}\) ．
（d）\((3 \%)\) Determine the determinant of \(2\left(\mathbf{A}^{T} \mathbf{A}\right)\) ．
（e）（4\％）Determine \(\operatorname{rank}\left(\mathbf{A}^{\mathbf{3}}\right)\) ．
4．\((6 \%)\) Let \(T\) be a linear transformation which rotates every vector in \(\mathcal{R}^{2}\) by \(30^{0}\) in the conn－ terclockwise direction，then projects it on the x －axis．Determine the matrix representation of this linear transformation，ie．if \(T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\mathbf{B}\left[\begin{array}{l}x \\ y\end{array}\right]\) for any vector \(\left[\begin{array}{l}x \\ y\end{array}\right] \in \mathcal{R}^{2}\) ，then \(\mathbf{B}=\) ？
5．\((6 \%)\) Find an orthonormal basis for the column space of
\[
\mathbf{D}=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 4 & 0 \\
1 & 4 & 6 \\
1 & 4 & 6
\end{array}\right]
\]


\section*{國立臺準科技大學}

九十四學年度碩士班招生考試試題
系所组別：電子工程系碩士班乙一組
科 目：工程數學
（6）Let \(p(x)=\frac{1}{2} e^{-|x|},-\infty<x<\infty\)
Find \(\mathrm{E}[\min (|x|, 1)]\) ．
（7）Let \(f_{X Y}(x, y)=\left\{\begin{array}{l}A, 0<x<1,0<x<y \\ 0, \text { otherwise }\end{array}\right.\) ，where A is a constant ． Find the correlation \(\rho_{X Y}\) for X and Y
（8） \(\mathrm{X}, \mathrm{Y}\) are independent random variables with Binomial distribution． where \(X \sim B\left(n_{1}, p\right), Y \sim B\left(n_{2}, p\right)\) ．Express \(P\{X=k \mid X+Y=n\}\) in terms of \(C_{n_{1}+n_{2}}^{n}, C_{n_{1}}^{k}, C_{n_{2}}^{n-k}\)
（9） \(\mathrm{X}, \mathrm{Y}\) are independent random variables and obey the same distribution
\(p(x)=\left\{\begin{array}{l}e^{-x}, x>0 \\ 0, x \leq 0\end{array} \quad\right.\) Let \(U=X+Y, V=\frac{X}{Y}\) prove that \(\mathrm{U}, \mathrm{V}\) are independent

\section*{國立台萼科技大學九十五學年度碩士班招生試題}

系所組別：電子工程系碩士班乙三組
科 目：工程數學
總分 100 分
1．Briefly answer the following questions．You will not get any credit if only the answer is given．
（a）（ 5 points）Consider a \(3 \times 3\) system of linear equations \(\mathrm{Ax}=\mathrm{b}\) ，where
\[
\mathbf{A}=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 5 & 8 \\
3 & 5 & 7
\end{array}\right] \quad \text { and } \mathbf{b}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
\]

Determine the condition on \(b_{1}, b_{2}\) ，and \(b_{3}\) such that \(\mathrm{Ax}=\mathrm{b}\) does not have a solution．
（b）（5 points）Let A be an \(n \times n\) matrix with rank \(r\) ，then which of the following matrices also has（have）rank \(r\) ？
\[
3 \mathbf{A}^{T},\left[\begin{array}{ll}
2 \mathbf{A} & 3 \mathbf{A}
\end{array}\right],\left[\begin{array}{l}
\mathbf{A} \\
\mathbf{A}
\end{array}\right],\left[\begin{array}{ll}
\mathbf{A} & \mathbf{A} \\
\mathbf{A} & \mathbf{A}
\end{array}\right]
\]

2．（ 5 points）Let \(\mathbf{P}_{\boldsymbol{n}}\) denote the set of all polynomials of degree less than \(n\) ．Now，consider a subspace \(V\) of \(P_{10}\) which is given by
\[
\mathrm{V}=\left\{p(x): p(x)=x^{9} p\left(x^{-1}\right)\right\}
\]

Determine \(\operatorname{dim}(\mathrm{V})\) ．
3．（a）（5 points）Suppose that \(\mathrm{A}=\left[\begin{array}{cc}6 & -4 \\ \alpha & \beta\end{array}\right]\) ，then determine \(\alpha\) and \(\beta\) such that A has eigenvectors \(\mathrm{x}_{1}=\left[\begin{array}{l}4 \\ 3\end{array}\right]\) and \(\mathrm{x}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]\) ．
（b）（ 5 points）Consider another \(2 \times 2\) matrix \(\mathbf{B}\) with the same eigenvectors \(\mathrm{x}_{1}\) and \(\mathrm{x}_{2}\) as（a） and with respective eigenvalues \(\lambda_{1}=1\) and \(\lambda_{2}=0\) ．Determine \(B^{10}\) ．

4．（ 10 points）Consider a communication system which transmits the message \(\gamma\) and \(\eta\) through a linear combination with two known waveforms \(v_{1}(t)\) and \(v_{2}(t)\) by \(\gamma v_{1}(t)+\eta v_{2}(t)\) ，where \(\gamma\) and \(\eta\) are real numbers，and \(v_{1}(t)\) and \(v_{2}(t)\) are given by



The receiver receives \(x(t)\) and determines the transmitted \(\gamma\) and \(\eta\) by choosing \(\gamma\) and \(\eta\) which minimize \(\left\|x(t)-\left(\gamma v_{1}(t)+\eta v_{2}(t)\right)\right\|\) ，where \(\|y(t)\|=\sqrt{\langle y(t), y(t)\rangle}\) with \(\langle y(t), z(t)\rangle=\) \(\int_{-1}^{1} y(t) z(t) d t\) ．Now suppose that the received signal \(x(t)\) is as given below．Determine the transmitted \(\gamma\) and \(\eta\) ．


國立台灣科技大學九十五學年度碩士班招生試題
系所組別：電子工程系碩士班乙三組
目：工程數學

5．Consider the partial differential equation given by
\[
\frac{\partial^{2} \Phi(x, t)}{\partial x^{2}}=\eta^{2} \frac{\partial^{2} \Phi(x, t)}{\partial t^{2}}, \quad 0<x<a, t>0
\]
where \(\eta\) is a known constant．
（a）（7 points）Find a general solution for this partial differential equation．
（b）（8 points）Find the solution with initial condition
\[
\begin{gathered}
\Phi(0, t)=0, \quad \Phi(a, t)=0, \quad t>0 \\
\Phi(x, 0)=\mathbf{0},\left.\frac{\partial \Phi(x, t)}{\partial t}\right|_{t=0}=1, \quad 0<x<a
\end{gathered}
\]


\section*{國立台灣科技大學九十五學年度碩士班招生試題}

系所組別：電子工程系碩士班乙三組
科 目：工程数學

6．Consider a differential equation of the form
\[
y^{\prime \prime}(t)+4 y^{\prime}(t)+4 y(t)=2 t+1
\]
with the initial conditions \(y(0)=0\) and \(y(1)=1\) ．Please find an explicit solution of this differential equation．（15 Points）

7．A complex function \(f(z)\) is characterized by the formula \(f(z)=f(x+i y)=u(x, y)+i v(x, y)\) ， where \(x\) and \(y\) are real－valued variables and \(u(x, y)\) and \(v(x, y)\) are real－valued functions．If \(u(x, y)=x^{3}-3 x y^{2}+2 y\) ，please determine the general expression for \(v(x, y)\) such that \(f(z)\) is analytic inside the unit circle on the complex plane．（10 Points）

8．Suppose \(n\) is a positive integer．Please determine all roots of the equation
\[
\left[(z-1)^{n}-1\right]\left[(z-1)^{3 n}+(z-1)^{2 n}+(z-1)^{n}+1\right]=0 .
\]
（10 Points）

9．A complex function \(f(z)\) is defined by \(f(z)=\frac{z^{2}}{\left(z^{4}+0.5 z^{3}\right)}\) ．（a）Please determine residue of \(f(z)\) at \(z=0\) ．（ 5 Points）（b）Please find residue of \(f(z)\) at \(z=-0.5\) ．（5 Points）（c）Please find \(\oint_{C} f(z) d z\) ，where \(C\) is a closed counterclockwise contour on the unit circle．（5 Points）

\section*{國立台管科技大璡九十六學年度碩士班招生試題}

系所組別：電子工程系碩士班乙三組
科 目：工程数學

\section*{鲁分 100 分}

1．（8 points）Briefly answer the following questions．You will not get any credit if only the answer is given．
（a）（4 points）Let \(\mathbf{C}=\mathbf{A B}\) ，where \(\mathbf{A}, \mathrm{B}\) ，and \(\mathbf{C}\) are \(m \times n, n \times m\) ，and \(m \times m\) matrices， respectively \((m>n)\) ．Is \(\mathbf{C}\) invertible？Briefly justify your answer．
（b）（ 4 points）Let D be a \(4 \times 4\) matrix with real entries．Suppose that the diagonal elements of D are all equal to 2 ，i．e．\(d_{11}=d_{22}=d_{33}=d_{44}=2\) and that D is singular．If we know one of its eigenvalue is \(2+i\) ，then determine the other three eigenvalues．

2．（8 points）Let matrix \(\mathbf{A}\) be de given by
\[
\mathbf{A}=\left[\begin{array}{lll}
3 & 6 & 2 \\
3 & 2 & 1 \\
2 & 1 & 1
\end{array}\right]
\]
（a）（4 points）Determine elementary matrices， \(\mathbf{E}_{1}, \mathbf{E}_{2}, \mathbf{E}_{3}\) such that \(\mathbf{E}_{1} \mathbf{E}_{2} \mathbf{E}_{3} \mathbf{A}=\mathrm{L}\) ，where L is a lower triangular matrix．
（b）（4 points）From（a），factorize \(\mathbf{A}\) as \(\mathbf{A}=\mathbf{U L}\) ，where \(\mathbf{U}\) is an upper triangular matrix and L is as given in（a）．

3．（8 points）Consider a linear transformation \(T\)
\[
T: \mathcal{R}^{3} \rightarrow \mathcal{R}^{4}
\]
with
\[
T\left(\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
2 a_{1} \\
a_{1}+2 a_{2} \\
a_{2}+2 a_{3} \\
a_{3}+2 a_{1}
\end{array}\right]
\]

Is \(T\) one－to－one？Does \(T\) map \(\mathcal{R}^{3}\) onto \(\mathcal{R}^{4}\) ？Justify your answers．
4．（11 points）Let \(\mathbf{u}\) be a unit column vector in \(\mathcal{R}^{3}\) that is perpendicular to the plane \(U\) which passes through the origin．Given a vector \(\mathbf{x}\) as shown in the following figure．

Suppose that

\[
\mathbf{A}=\mathrm{I}+\mathbf{u} \mathbf{u}^{T}
\]
where \(I\) is a \(3 \times 3\) identity matrix．
（a）（7 points）PLOT the vector \(\mathbf{y}\) ，where \(\mathbf{y}=\mathbf{A x}\) ．
（b）（4 points）Is \(\mathbf{u}\) an eigenvector of \(\mathbf{A}\) ？If no，explain why．If yes，determine the correspond－ ing eigenvalue．

5．（15 points）Consider a differential equation of the form
\[
y^{\prime \prime}(t)+y^{\prime}(t)-2 y(t)=e^{t}
\]
with the initial condition \(y(0)=2\) and \(y^{\prime}(0)=1\) ．Please find an explicit solution of this differential equation．

\section*{系所組別：電子工程系碩士班乙三組}

科 目：工程数學

6．（15 Points）A partial differential equation is defined as
\[
\frac{\partial u(x, y)}{\partial x}=2 \frac{\partial u(x, y)}{\partial y}+2 u(x, y) .
\]

The boundary conditions of this partial differential equation is given by
\[
u(x, 0)=e^{x}+2 e^{-4 x}
\]

Please find the solution of this partial differential equation．
7．（15 Points）It is a well－known fact that a complex－variable function \(f(z)\) with well－ defined derivative at a point \(z=z_{0}\) may not be analytic at \(z=z_{0}\) ．Please give such an example and verify the above property for this complex－variable function．

8．（10 Points）Suppose \(n\) is a positive integer and \(z_{0}\) is a complex constant．Please determine the residue of the function \(e^{2 z} /\left(z-z_{0}\right)^{n}\) at the pole \(z=z_{0}\) ．

9．（10 Points）Please derive an explicit forraula for computing \(\sin ^{-1}(z)\) ，where \(z\) is a complex number．

\section*{國立台灣科技大學九十七學年度碩士班招生試題}
```

系所組別: 電子工程系碩士班乙一組
科 目: 工程數學

```

\section*{總分 100 分}

1．（20 Points）Briefly answer the following questions．You will not get any credit if only the answer is given．Each problem worths 4 points．
（a）Let \(\mathbf{A}\) be an \(4 \times 4\) matrix which satisfies
\[
\mathbf{a}_{1}+2 \mathbf{a}_{2}-4 \mathbf{a}_{4}=\mathbf{0}
\]
where \(\mathbf{a}_{\boldsymbol{i}}\) denotes the \(i^{\text {th }}\) column of \(\mathbf{A}\) and \(\mathbf{0}\) is a \(4 \times 1\) zero vector，then how many possible solutions will the system \(\mathbf{A x}=\mathbf{b}\) have？Explain．
（b）Let B be another \(4 \times 4\) matrix，is \(\mathbf{C}=\mathbf{A B}\) singular？Briefly justify your answer．
（c）Determine the row echelon form of \(\mathrm{xy}^{T}\) ，where \(\mathbf{x}\) and y are two nonzero（column）vectors in \(\mathcal{R}^{n}\) ．
（d）（c）continued．Determine the dimension of the null space of \(\mathrm{xy}^{T}\) ．
（e）Find the inverse of the following block matrix
\[
\left[\begin{array}{rr}
0 & -\mathrm{I} \\
-\mathrm{I} & \mathrm{H}
\end{array}\right]
\]
where \(\mathbf{0}\) is an \(n \times n\) zero matrix， \(\mathbf{I}\) is an \(n \times n\) identity matrix，and \(\mathbf{H}\) is an \(n \times n\) invertible matrix．
2．（ 10 Points）Let \(P_{n}\) denote an inner product space which consists of all polynomials of degree less than \(n\) with the inner product defined as \(\langle p(x), q(x)\rangle=\int_{0}^{1} p(x) q(x) d x\) ．Now suppose that U is the subspace of \(P_{3}\) which is given by
\[
U=\{r(x): r(0)=0\}
\]
（a）（5 Points）Determine an orthogonal basis for \(U\) ．
（b）（5 Points）Consider another subspace of \(P_{3}\) which is given by
\[
V=\{t(x): t(-1)=0\}
\]

Determine dim（ UnV）．
3．（10 Points）Consider the following figure：

（a）（5 Points）If all the points in the above figure undergo the linear transformation of \(\left[\begin{array}{rr}\sqrt{3} & 1 \\ -1 & \sqrt{3}\end{array}\right]\) ． Plot the resulting figure．
（b）（5 Points）Is the above linear transformation one－to－one？Is the above linear transformation onto？Justify your answer．

4．（10 Points）As we learned in Linear Algebra，the adjoint of an \(n \times n\) matrix \(\mathbf{A}\) is defined as
\[
\operatorname{adj} \mathbf{A}=\left[\begin{array}{cccc}
A_{11} & A_{21} & \cdots & A_{n 1} \\
A_{12} & A_{22} & \cdots & A_{n 2} \\
\vdots & \vdots & \ddots & \vdots \\
A_{1 n} & A_{2 n} & \cdots & A_{n n}
\end{array}\right]
\]
where \(A_{i j}\) is the cofactor of \(a_{i j}\) ．Also，it is known that the adjoint satisfies the property that \(\mathbf{A} \cdot \operatorname{adj} \mathbf{A}=\) \(\operatorname{det}(\mathbf{A}) \mathbf{I}\) ．Now suppose that \(\mathbf{A}\) has eigenvalues \(\lambda_{1}, \cdots, \lambda_{n}\) ，then
（a）（5 Points）Determine Trace（adj A）in terms of the eigenvalues of \(\mathbf{A}\) ，where Trace（ \(\cdot\) ）denotes the summation of the diagonal elements of the matrix inside．
（b）（5 Points）Determine \(\operatorname{det}(\operatorname{adj} \mathbf{A})\) in terms of the eigenvalues of \(\mathbf{A}\) ．

國立台灣科技大學九十七學年度碩士班招生試題
系所組別：電子工程系碩士班乙一組
科 目：工程数學

5．The random variable \(X\) is selected at random from the unit interval；the random variable \(Y\) is then selected at random from the interval \((0, \mathrm{X})\) ．Find the cdf of Y ．

6．Let \(X\) be the input to a communication channel and let \(Y\) be the output．The input to channel is +1 volt or -1 volt with equal probability．The output of channel is the input plus a noise voltage \(N\) that is uniformly distributed in the interval from +2 volts to -2 volts．Find \(\mathrm{P}[\mathrm{X}=+1, \mathrm{Y} \leqq\) \(0]\) and the probability that \(Y\) is negative given that \(X\) is +1 ． （14\％）

7．A particle leaves the origin under the influence of the force of gravity and its initial velocity v forms an angle \(\varphi\) with the horizontal axis．The path of the particle reaches the ground at a distance
\[
\mathrm{d}=\frac{\mathrm{v}^{2}}{\mathrm{~g}} \sin 2 \varphi
\]
from the origin（Fig 1 ）．Assuming that \(\varphi\) is a random variable uniform between 0 and \(\pi / 2\) ，determine ：the probability that \(\mathrm{d} \leqq \mathrm{d}_{0}\) ．

國立台灣科技大學九十七學年度碩士班招生試題
系所組別：電子工程系碩士班乙一組
科 目：工程數學

（Figi）
8．prove \(f(x \mid X \leq a)=\frac{f(x)}{\int_{-\infty}^{a} f(x) d x}\) for \(x<a\) And \(f(x \mid b<X \leq a)=\frac{f(x)}{F(a)-F(b)}\) for \(b \leq x<a\)
（8\％）

\title{
台灣科技大學 \\ 電機工程系 \\ 91～97 學年度 \\ 工程數學考古題
}

\section*{}

\section*{九十一學年度碩士班招生考試試題}

系所組別：電機工程系甲組，電機工程系乙二組
科 目：工程数學

\section*{（共六題；㴖分 100 分）}

1．Let \(\mathbf{F}=\left(y z e^{x y z}-4 x\right) \hat{a}_{x}+\left(x z e^{x y z}+z\right) \hat{a}_{y}+\left(x y e^{x y z}+y\right) \hat{a}_{z}\) for all \(x, y\) and \(z\) ．
（a）Verify that \(\mathbf{F}\) is conservative．
（b）Find a potential function for \(\mathbf{F}\) ．
2．Let \(g\) be a periodic function defined by
\[
g(t)=t^{2} \text { for } 0<t<3 \text { and } g(t+3)=g(t) \text { for all } t
\]
（a）Draw the graph of \(g\) for \(-6<t<6\) ．
（b）Compute the Fourier series of \(g\) ．
（c）Draw the amplitude spectrum of \(g\) for the three lowest－frequency components．
3．Evaluate \(\oint_{c} 1 /\left(1+z^{2}\right) d z\) if \(C\) is any piecewise－smooth simple closed curve in the complex plane．
Consider all possible cases，which do not pass through \(i\) or \(-i\) ．

4．Find the general solution \(y(x)\) to
\[
y^{\prime \prime}-8 y^{\prime}+16 y=8 \sin (2 x)+3 e^{4 x}
\]

5．Solve the initial value problem for \(y(t)\) with Laplace transform：
\[
y^{\prime \prime}+2 t y^{\prime}-4 y=1 ; \quad y(0)=y^{\prime}(0)=0
\]

6．Use the matrix exponential to solve the following initial value problems：
\[
\frac{d}{d t} Y(t)=A Y(t), Y(0)=Y_{0} .
\]
（1）\(A=\left(\begin{array}{ll}3 & 4 \\ 3 & 2\end{array}\right), \quad Y_{0}=\binom{6}{1}\) ，and \(Y(t)=\binom{y_{1}(t)}{y_{2}(t)}\)
（2）\(A=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right), \quad \mathrm{Y}_{0}=\left(\begin{array}{l}2 \\ 1 \\ 4\end{array}\right)\) ，and \(\mathrm{Y}(t)=\left(\begin{array}{l}y_{1}(t) \\ y_{2}(t) \\ y_{3}(t)\end{array}\right)\)


\section*{國立臺灣科技大學}

\section*{九十二學年度碩士班招生考試試題}

系所組別：電機工程系碩士班乙一組
科 目：工程数學

\section*{（共九題；滿分一百分）}

1．Consider a differential equation as \(\frac{d P}{d t}=P(t)\left(c_{1}-c_{2} P(t)\right)\) ，where \(c_{1}\) and \(c_{2}\) are constants．Find the solution for the differential equation given \(P(0)=P_{0} .(10\) points \()\)

2．If both \(\mu_{1}(x, y)=x y\) and \(\mu_{2}(x, y)=\left(x^{2}+y^{2}\right)^{-1}\) are integrating factors for the differential equation \(y^{\prime}=f(x, y)\) ，then what is \(f(x, y) ?(10\) points \()\)

3．Let \(\Phi(x)\) and \(\Psi(x)\) be linearly independent solutions of \(y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0\) on an open interval \(I\) ．Assume that \(p(x)\) and \(q(x)\) are continuous on \(I\) ．Then prove that between two consecutive zeros of \(\Phi(x)\) ，there always exists exact one zero for \(\Psi(x) .(15\) points \()\)

4．Solve \(-t(1+t) y^{\prime \prime}+2 y^{\prime}+2 y=6(t+1) ; \quad y(-1)=y(1)=0 .(15\) points \()\)

\section*{國立臺灤科技大學}

\section*{九十二學年度碩士班招生考試試題}

系所組別：電機工程系碩士班乙一組
科 目：工程数學

5．Describe all solutions of \(A x=0\) in a parametric vector form，where \(A\) is the following matrix．（ \(10 \%\) ）
\[
A=\left[\begin{array}{cccccc}
1 & -5 & 0 & 2 & 0 & -4 \\
0 & 0 & 1 & 0 & 0 & -3 \\
0 & 0 & 0 & 0 & 4 & 8 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\]

6．Find the inverse matrix of the following matrix，if it exists．（10\％）
\[
\left[\begin{array}{ccc}
1 & 3 & 2 \\
0 & 1 & 1 \\
-1 & 0 & 1
\end{array}\right]
\]

7．Given a matrix with its row equivalent matrix shown below，decide bases for \(\operatorname{Col} A\) and Nul A．（10\％）
\[
A=\left[\begin{array}{cccc}
1 & -3 & 2 & 5 \\
-2 & 6 & 0 & -3 \\
4 & -12 & -4 & -1
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & -3 & 2 & 5 \\
0 & 0 & 4 & 7 \\
0 & 0 & 0 & 0
\end{array}\right]
\]

8．Let \(A=\left\{a_{1}, a_{2}, a_{3}\right\}\) and \(B=\left\{b_{1}, b_{2}, b_{3}\right\}\) be bases for the vector space \(V\) ，and suppose that \(a_{1}=4 b_{1}-b_{2}, a_{2}=-b_{1}+b_{2}+b_{3}\) ，and \(a_{3}=b_{2}-2 b_{3}\) ．
（a）Find the change－of－coordinate matrix from \(A\) to \(B .(5 \%)\)
（b）Find \([x]_{B}\) for \(x=3 a_{1}+4 a_{2}+a_{3}\) ．（5\％）

9．Define \(T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}\) by \(T(x)=A x\) ，where \(A=\left[\begin{array}{cc}7 & 2 \\ -4 & 1\end{array}\right]\) ．Find a base \(B\) for \(\mathbb{R}^{2}\) with the property that the \(B\)－matrix of \(T\) is a diagonal matrix．（10\％）


\section*{國立呈灤科技大學}

九十三學年度碩士班招生考試試題
系所組別：電機工程系乙一組
科 目：工程數學

總分 100 分

1．\((15 \%)\) Solve the following systems
\[
\begin{gathered}
x^{\prime \prime}-2 x^{\prime}+3 y^{\prime}+2 y=4 \\
2 y^{\prime}-x^{\prime}+3 y=0 \\
x(0)=x^{\prime}(0)=y(0)=0
\end{gathered}
\]

2．（15\％）Find the general solution of
\[
y^{\prime \prime}-3 y^{\prime}+2 y=2 x+8 \sin (2 x)
\]

3．（10\％）For the following equation，write out the first six nonzero terms of a series solution about 0 ．
\[
y^{\prime \prime}-2 y^{\prime}+x^{3} y=0
\]

4．（ \(10 \%\) ）Solve the following equation
\[
y^{\prime}=-\frac{1}{x} y^{2}+\frac{2}{x} y ; \quad y(1)=4
\]


\section*{國立臺灤科技大學}

九十三學年度碩士班招生考試試題

\section*{系所組別：電機工程系乙一組}

科 目：工程數學

5．（10\％）Let \(T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}\) be a linear transformation such that
\[
T\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2},-x_{1}-3 x_{2},-3 x_{1}-2 x_{2}\right)
\]

Find \(x \in \mathbb{R}^{2}\) such that \(T(x)=(-4,7,0)\) ．

6．（ \(10 \%\) with \(5 \%\) each）Let \(T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}\) be the transformation that rotates each point in \(\mathbb{R}^{2}\) about the origin through an angle \(\varphi\) ，with counterclockwise rotation for a positive angle．
（a）Find the standard matrix \(A\) of this rotation．
（b）Express the matrix \(\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)\) ，where \(a\) and \(b\) are both real numbers，in terms of a rotation transformation．

7．（ \(10 \%\) ）The set \(B=\left\{1+t^{2}, t+t^{2}, 1+2 t+t^{2}\right\}\) is a basis for the vector space \(P_{2}\) of polynomials up to the second order．Find the coordinate vector of \(P(t)=1+4 t+7 t^{2}\) relative to \(B\).

8．\((20 \%\) ，with \(10 \%\) each．）Find the invertible matrix \(P\) and matrix \(C\) of the form \(\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)\) for the matrix
\[
A=\left(\begin{array}{cc}
1 & 5 \\
-2 & 3
\end{array}\right)
\]
such that the given matrix has the form of \(A=P C P^{-1}\) ．
（a）What is the matrix \(P\) ？
（b）What is the matrix \(C\) ？


國立豆淓科技大學
九十四學年度碩士班招生考試試題
系所组別：電機工程系碩士班甲组，電機工程系碩士班乙二組
科
目：工程數學

題目共 2 頁， 8 題，總分 100 分，各題分数如示。
（1）Find the general solution for the following equation：
\(y^{(7)}+18 y^{(5)}+81 y^{\prime \prime}=0\)
（2）Find the Fourier transform for the following function：
\[
h(t)=\int_{-\infty}^{1} g(x) d x \quad(10 \%)
\]
（3）Let \(u(t)\) denote the unit step function，find the Laplace transform for the following function：
\[
f(x)=\sin \left[3\left(4 t-\frac{\pi}{6}\right)\right] u(4 t-6 \pi)
\]
（4）Consider the symmetric matrix \(A=\left[\begin{array}{rrr}5 & -4 & -2 \\ -4 & 5 & -2 \\ -3 & -2 & 8\end{array}\right]\) ，find its orthogonal diagonalizing matrix Q．（15\％）


\section*{國立䜭準科技大學}

九十四學年度碩士班招生考試試題

\section*{系所組別：電機工程系碩士班甲組，電機工程系碩士班乙二組}科目：工程數學

5．Calculate the complex variable integral \(\oint_{C} \frac{\sin 2 z}{(z+3)(z+2)^{2}} d z\) ，where \(C\) is a clockwise rectangular contour with vertices at \(3+\mathrm{i},-2.5+\mathrm{i},-2.5-\mathrm{i}, 3-\mathrm{i}\) ．（ \(10 \%\) ）

6．Solve the complex quadratic equation \(z^{2}-(4+i) z+(8+i)=0 .(10 \%)\)

7．Verify the Stokes＇s theorem by the vector function \(\vec{F}=y \vec{i}+z \vec{j}+x \vec{k}\) ，where \(\vec{i}, \vec{j}\) ，and \(\vec{k}\) are the mutual orthogonal unit vectors in the \(\mathrm{x}-\mathrm{y}-\mathrm{z}\) coordinate system，by the unit circle \(x^{2}+y^{2}=1\) in the \(\mathrm{x}-\mathrm{y}\) plane．（15\％）

8．Let \(f(x, y, z)=2 x+y z-3 y^{2}\) and \(\vec{F}\) is the gradient of \(f\) ．Calculate the line integral \(\int_{c} \vec{F} \cdot d \vec{\ell}\) ， where \(C\) is the quarter circle from \(A\) to \(B\) as show in Figure P8．（15\％）


Figure P8


國立台灣科技大學九十五學年度碩士班招生試題
系所組別：電機工程系碩士班甲組，乙二組
科 目：工程數學

\section*{域炃 100 分}
（1）Solve the following differential equation：
\[
y^{\prime \prime}-2 y^{\prime}+y=e^{x}+x \quad y(0)=1, \quad y^{\prime}(0)=0
\]
（2）Solve the initial－value problem：
\[
\mathbf{x}^{\prime}=\left[\begin{array}{lll}
2 & 1 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]
\]
（3）（a）Find the Fourier Transform for the following function：（10\％）

（b）Let \(F(s)=\frac{1}{s^{2}\left(s^{2}+\omega^{2}\right)}\) ，find the inverse Laplace trnasform \(f(t)\) ．

4．Evaluate the complex integral \(\oint_{C} \tan z d z\) for the contour \(C\) in the circle \(|z|=3 .(15 \%)\)

5．Evaluate \(\int_{C}(x-1) y z d x+\cos (y z) d y+x(z-1) d z\) ，where C is
straight－line segment from \((1,1,1)\) to \((-2,1,3) .(15 \%)\)
6．Let V describe the region bounded by the hemisphere
\(x^{2}+y^{2}+(z-2)^{2}=9,2 \leq z \leq 5\) ，and the plane \(z=2\) ．Please verify the
divergence theorem if \(\vec{F}=x \vec{i}+y \vec{j}+(z-2) \vec{k} .(20 \%)\)


國立台灣科技大學九十七學年度碩士班招生試題
系所組別：電機工程系碩士班己組
科
目：工程數學

\section*{總分 100 分}
（1）Find a unit normal vector \(\mathbf{n}\) on the plane \(4 x^{2}+y^{2}=z\) at the point \((1,-2,8)\) ．（ \(16 \%\) ）
 \(|z-1|=3\) ．（18\％）
（3）Find the probability of \(\mathrm{P}(x>V)\) for a Rayleigh distribution \(p(x)=\frac{x}{\psi} e^{-x^{2} / 2 \psi}, x \geq 0 .(16 \%)\)
（4）Given \(A=\left(\begin{array}{cccc}2 & 1 & 0 & -5 \\ -1 & 0 & 1 & 2\end{array}\right)\)
（a）Find a basis for the nullspace of \(A\) ．（8\％）
（b）Given that \(\left\{(2,1,0,-5)^{T},(-1,2,5,0)^{T}\right\}\) is an orthogonal basis for the column space of \(A^{T}\) ，find the vector in the column space of \(A^{T}\) that is closest to \((-1,0,0,1)^{T} .(12 \%)\)
（5）Find the inverse Laplace transform of \(Y(s)=\frac{2}{s^{3}(s+2)^{2}} .(15 \%)\)
（6）Given the Fourier transform pair：\(x(t) \leftrightarrow X(\omega)\) ，derive the Fourier transform of \(x(a t)\) ．Also find \(X(\omega)\) when \(x(t)=e^{-d d l}\) where \(c>0 .(15 \%)\)

\title{
台灣科技大學 \\ 營建工程系 \\ 91～97 學年度 \\ 工程數學考古題
}

國立囊淓科技大學九十一學年度碩士班招生考試試題
系所組別：营建工程系乙組
科 目：工程数學

注意：本試題總分 100 分，共四大題，每大題各有兩小題，配分詳題末標示•
—，有一個物體承受大小爲 q 之外力作用而達静態平衡之情形如下圖：


放掉外力後此物體自由震動之方程式爲：
\[
m \frac{d^{2} y(t)}{d t^{2}}+k y(t)=0
\]

其中 \(y(t)=\) 位移函數，\(t=\) 時間，\(m=\) 質量，\(k=\) 彈簧常數。
（1）試求此物體第一次回到「未受力前之位置」的時間爲何？（15\％）
（2）考慮摩擦力之影響時其運動方程式可修正爲：
\[
m \frac{d^{2} y(t)}{d t^{2}}+c \frac{d y(t)}{d t}+k y(t)=0
\]

若知 \(c=2 \sqrt{k m}\) ，其他符號的定義如前所述。試舄出通解 \(\mathrm{y}(\mathrm{t})\) 之數學式（不須解出待定係數）：並扼要陳述在題（2）條件下之物體運動特性•（10\％）

二，應用向量分析和矩陣運算方法求解下列兩題：
（1）有一傾斜群椿，椿帽上承受之總力爲 \(\vec{F}=3 \bar{i}-2 \vec{j}+6 \vec{k}\) ，單位爲 MN 。椿群由甲，乙，丙三根椿所組成，其中甲椿之方向向量爲 \(\bar{r}=\vec{i}+\vec{j}+\vec{k} \circ\) 試求榜帽總力在甲楮方向之分力向量爲何？（15\％）
（2）若知各椿之椿頭軸力可由下列聯立方程式求解： \(\mathbf{A P}=\mathbf{B}\) ，
其中，軸力矩陣 \(P=\left[\begin{array}{l}p_{1} \\ p_{2} \\ p_{3}\end{array}\right]\) ，矩陣 \(A=\left[\begin{array}{lll}4 & 2 & 1 \\ 2 & 3 & 1 \\ 0 & 1 & 2\end{array}\right]\) ，矩陣 \(B=\left[\begin{array}{c}3 \\ -2 \\ 6\end{array}\right]\) 。
試求 \(\mathbf{A}\) 之反矩陣，再求軸力矩陣 P •（ \(10 \%\) ）


\title{
國立䯧㭚科技大學 \\ 九十一學年度碩士班招生考試試題
}

系所组別：学建工程系乙组
科 目：工程数學

三，請回答下列有關向量之微積分問題：
（1）試以混凝土擋水羁下方之土層滲流問題爲例，說明何謂「向量場（vector field）」和「流線（streamline）」’並說明兩者之相互關係。（15\％）
（2）以作用力： \(\bar{F}=x \bar{i}+\vec{j}+z \vec{k}\) ，將一個物體沿著空間中的一個曲線 C 移動，曲線 C 的參數方程式爲：\(x=t, y=t, z=t^{3} ; 0 \leq t \leq 1\)

求此力所作的功爲何？（ \(10 \%\) ）

四，有一秥土層厚度爲 2 H ，孔隙水壓呈線性分佈，頂部爲 \(50 \mathrm{kN} / \mathrm{m}^{2}\) ，底部爲 30 \(\mathrm{kN} / \mathrm{m}^{2}\) ，如下圖所示。
（1）試求孔隙水壓分佈之富氏正弦級數（Fourier sine series）？（15\％）
（2）取富氏正弦級數之前五項計算並作圖，然後再與實際値比較•（10\％）


國立臺灣科技大學
九十二學年度碩士班招生考試試題
系所組別：营建工程系碩士班乙組
科 目：工程数學

注意：本試題總分 100 分，共四大題，每大題各有兩小題，配分詳題末標示。

一，有一微分方程式如下：
\[
x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=10 \sin (\ln x)
\]

其中，\(x>0, y^{\prime}=\frac{d y}{d x}, y^{\prime \prime}=\frac{d^{2} y}{d x^{2}}, \ln\) 爲自然對數。
（1）試用数數轉換法令 \(z=\ln x\) ，將原方程式轉換爲以 \(z\) 爲自繁數之「常係數微分方程式」。（10\％）
（2）縜上題，若知 \(x=1\) 時，\(y(x)=3, y^{\prime}(x)=0\) ，試求其解 \(y(x)=\) ？（ \(15 \%\) ）

\section*{二，線性聯立方程式之矩陣式爲：AX＝B}

其中 ，\(A=\left[\begin{array}{ccc}1 & 1 & -1 \\ 1 & 2 & 1 \\ 1 & 1 & k^{2}-5\end{array}\right], X=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right], B=\left[\begin{array}{l}1 \\ 2 \\ k\end{array}\right]\)
（1）若此聯立方程式有唯一解，則 \(k\) 値爲何？（ \(10 \%\) ）
（2）若 \(k=3\) ，試求 A 之反矩陣？（ \(15 \%\) ）

三，定義唱位階梯函數（unit step function）如下：
\[
\begin{aligned}
& u(t-a)=0 \text { if } t<a \\
& u(t-a)=1 \text { if } t \geq a
\end{aligned}
\]
（1）已知函數 \(f(t)=2 t[1-u(t-2)]-2(t-4)[u(t-2)-u(t-4)]\) ，試求 \(f(t)\) 的拉普拉氏轉換，\(L[f(t)]=\) ？。（ \(\mathbf{1 0 \%}\) ）（提示：\(\left.L[u(t-a) y(t)]=e^{-a s} L[y(t+a)]\right)\)
（2）試以二階微分方程式爲例，簡要說明如何應用拉普拉氏轉換來求解，並舉出較適合應用此法求解之微分方程式類型？（15\％）

四，有一偏微分方程式如下所示：\(\frac{\partial u}{\partial t}=a^{2} \frac{\partial^{2} u}{\partial z^{2}}\) ；其中， \(0 \leq z \leq 2 H, t \geq 0, ~ a\)爲常係數。應用變數分離法及已知之邊界條件求得其解爲： \(u(z, t)=\sum_{\mu=1}^{\infty} A_{n} \sin \left(\frac{n \pi z}{2 H}\right) \exp \left(\frac{-n^{2} \pi^{2} a^{2} t}{4 H^{2}}\right)\) ；其中 \(\exp\) 代表指數函數。
（1）試根據初始條件：\(u(z, 0)=u_{0}\) ，求待定係數 \(A_{n}=\) ？（ \(15 \%\) ）
（2）試舉出一個應用此種偏微分方程式求解的大地工程問題，並說明在你所舉出的問題中係數 \(a\) 的物理意義爲何？（ \(\mathbf{1 0 \%}\) ）

\section*{國立䯧灤科技大拲}

九十三學年度碩士班考試試題
系所組別：营建工程系乙組，管建工程系丙組，營建工程系戊二組科目：工程數學

注意：本試題總分 100 分
—，令 \(L[\cdot]\) 爲 Laplace Transform 運算符號。
（1）試解 \(L[y(t) \delta(t-a)]\) ，其中 \(\delta(\cdot)\) 爲 Dirac Delta 函數，\(a>0\) 。（5\％）
（2）一長爲 \(2 L\) ，斷面積爲 \(A\) ，彈性模數爲 \(E\) 之均質軸向桿件如圖示，其中桿件左端點爲固定端，B 點處有一彈簧聯結至固定端且彈簧之彈性係數爲 \(k=E A / L\) 。令桿件之軸向變位函數爲 \(u(x)\) ，並假設桿件在 C 點處於承受某外力作用後產生 \(w\) 之位移即 \(u(2 L)=w\) ，試以 Laplace Transform 法求解桿件之軸向變位 \(u(x)\) 。（提示：\(L[f(t-a) H(t-a)]=e^{-a s} L[f(t)]\) ，其中 \(H(\cdot)\) 爲 Heaviside Step function）（20\％）


二，試解 \((2 x+1)^{2} y^{\prime \prime}(x)+(10 x+5) y^{\prime}(x)+3 y(x)=0\) 之通解（general solution）\(\circ(20 \%)\)

三，一彈簧－質量塊系統（質量爲 \(m\) ，彈簧彈性係數爲 \(k\) ）承受外力 \(F \cos (\omega t)\) 之作用如圖所示，
（1）請陳述 \(m, k\) 與 \(\omega\) 之關係式可使系統形成共振現象。
（5\％）
（2）令 \(y(0)=y^{\prime}(0)=0\) ，試求在共振條件下之位移反應 \(y(t)\) 。


四，一伴徑爲 \(r\) 之圓形滾輪沿地板滾動前進如圖所示，設滾輪與地板間無滑動且滾輪中心點以等速前行。
（1）當 \(t=0\) 時，A 點恰位於滾輪之正上方，
試求 A 點之位置向量（position vector）
\[
\vec{R}(t)=x(t) \vec{i}+y(t) \vec{j}
\]
（2）試求當 \(t\) 由 0 增加至 \(2 \pi r\) 後，A 點總共行走之距離 \(S\) 。
（10\％）


五，已知一 \(3 \times 3\) 矩陣 \(A\) 具有 3 個相異特徵値（eigen－value），吾人利用三正交單位向量 \(\vec{u}_{1}, ~ \vec{u}_{2}\) 及 \(\vec{u}_{3}\) 對矩陣 \(A\) 進行測試而得下列結果：\(A \vec{u}_{1}=\vec{u}_{1}, ~ A \vec{u}_{2}=\frac{8}{3} \vec{u}_{2}-\frac{2}{3} \vec{u}_{3} 及 A \vec{u}_{3}=-\frac{1}{3} \vec{u}_{2}+\frac{7}{3} \vec{u}_{3}\) ，
（1）試求 A 之所有特徵値，並以 \(\vec{u}_{1}, ~ \vec{u}_{2}\) 及 \(\vec{u}_{3}\) 表示其對應之特徵向量（eigen－vector）\({ }^{\circ}(\mathbf{1 5 \%})\)
（2）試求 \(\lim _{n \rightarrow \infty}\left(A^{-1}\right)^{n}\) ，其中（ -1 ）代表反矩陣符號 \(\cdot(5 \%)\)

\section*{國立臺濼科技大學}

九十四學年度碩士班招生考試試題
系所組別：營建工程系碩士班乙組，營建工程系碩士班丙組，營建工程系碩士班戊組科 目：工程數學

注意：本試題總分 100 分

一，一微分方程式爲 \(3 x^{2}+x y^{\alpha}-x^{2} y^{\alpha-1} \frac{d y}{d x}=0\) 。
（1）試求参數 \(\alpha\) 可使其成爲正合方程式（Exact Differential Equation）。（5\％）
（2）試根據（1）之結果求微分方程式之解 \(y(x) \circ(\mathbf{1 0 \%})\)

二，令函數 \(f(t)\) 之 Laplace Transform 運算可表爲 \(L[f(t)]=F(s)\) ，
且其逆轉換（Inverse Laplace Transform）運算爲 \(L^{-1}[F(s)]=f(t) 。\)
（1）試求 \(L^{-1}\left[\frac{s}{s^{2}+4 s+20}\right]\) 。（5\％）
（2）試求 \(L^{-1}\left[\frac{s}{s+1}\right]\) 。（5\％）
（3）試以 Laplace Transform 解 \(y^{\prime}(t)-4 y(t)=1 ; y(1)=0, t \geq 0\)（註：其他方法不予計分）\(\circ(\mathbf{1 0 \%})\)

三，一橢圓之方程式爲 \(x^{2}+\frac{y^{2}}{4}=4\) ，令 \(C\) 爲通過橢圓上 A 點
（座標爲 \((1,2 \sqrt{3}\) ））之法線（Normal Line）如附圖所示，
（1）試求法線 \(C\) 之方程式。（5\％）
（2）試求檘圓外之 B 點（座標爲（ \(3, \sqrt{3}\) ））與此法線 \(C\) 之最近距離 \(d \circ(\mathbf{1 0 \%})\)


四，考慮附圖中之簡化結構物模型，其中 \(k_{1}, k_{2}, k_{3}\) 爲第一至三樓之樓間勁度，且 \(k_{1}=2 \mathrm{~N} / \mathrm{m}\) ， \(k_{2}=k_{3}=1 \mathrm{~N} / \mathrm{m}\) 。若 \(F_{1}, F_{2}, F_{3}\) 分別爲作用於第一至三樓之力，則此三層樓之孌形與作用力之關係如下：
\(\underbrace{\left[\begin{array}{ccc}k_{1}+k_{2} & -k_{2} & 0 \\ -k_{2} & k_{2}+k_{3} & -k_{3} \\ 0 & -k_{3} & k_{3}\end{array}\right]}_{K} \underbrace{\left[\begin{array}{c}u_{1} \\ u_{2} \\ u_{3}\end{array}\right]}_{U}=\underbrace{\left[\begin{array}{l}F_{1} \\ F_{2} \\ F_{3}\end{array}\right]}_{F}\)
或 \(K U=F\)
其中 \(u_{1}, u_{2}, u_{3}\) 鴬第一至三樓之絕對位移。
（1）試求出 \(K\) 方陣之特徵値（Eigen－values）及特徵向量（Eigen－vectors）。（10\％）

（2）求出 \(K\) 之反矩陣 \(K^{-1}\) ，並解出當 \(F_{1}=F_{2}=F_{3}=1 \mathrm{~N}\) 時各層䅹之變形 \(u_{1}, u_{2}, u_{3} \circ(5 \%)\)

\section*{國立呈雱科技大學}

九十四學年度碩士班招生考試試題

\section*{系所組別：營建工程系碩士班乙組，管建工程系碩士班丙組，營建工程系碩士班戊組}科 目：工程數學

五，考慮附圖中之單自由度系統，

此系統於外力 \(f(t)\) 作用下之運動方程式如下：
\(m \frac{d^{2} x(t)}{d t^{2}}+c \frac{d x(t)}{d t}+k x(t)=f(t)\)


其中 \(t\) 是時間，\(m, c, k\) 分別是該系統之質量，阻尼及勁度，\(x(t)\) 是系統之位移。
（1）若 \(m=1, c=1, k=1\) ，該系統初始狀態爲 \(x(0)=1, \mathrm{~d} x(0) / \mathrm{d} t=0\)（初速度爲零），在無外力作用下 \((f(t)=0)\) ，求該系統之位移反應 \(x(t), t \geq 0\) 。 \((\mathbf{1 0 \%})\)
（2）若 \(m=1, c=0, k=1\) ，系統初始狀態爲 \(x(0)=0, \mathrm{~d} x(0) / \mathrm{d} t=0\) ，外力作用爲 \(f(t)=\sin (\omega t)\) ，試問 \(\omega\) 爲何値時該系統會形成共振現象？並解出在此共振現象下之位移反應 \(x(t) \circ(\mathbf{1 0 \%})\)

六，考慮下圖中之繩索：


該繩索在受到拉力 \(T\) 及垂直荷重 \(q(x)\) 作用下之垂直變形之方程式爲
\(T \frac{d^{2} y(x)}{d x^{2}}=q(x)\)
其中 \(y(x)\) 是此繩索之垂直變形。此繩索之左右兩端分別固定在 \(x=-2\) 及 \(x=2\) 之位置，
在此二位置該繩索之垂直變形爲零即 \(y(-2)=y(2)=0\) 。垂直荷重 \(q(x)\) 之分佈如下：
\(q(x)=\left\{\begin{array}{lc}1 & -1 \leq x \leq 1 \\ 0 & 1 \leq x \leq 2,-2 \leq x \leq-1\end{array}\right.\)
（1）試求出 \(q(x)\) 之富立葉級數（Fourier Series）\(\cdot(\mathbf{5 \%})\)
（2）若 \(T=1\) ，利用（1）之結果，求出此繩索垂直變形 \(y(x) \circ(\mathbf{1 0 \%})\)


國立台灣科技大學九十五學年度碩士班招生試題
系所組別：營建工程系碩士班乙組，丙組，戊組
科 目：工程數學

迬意：本試題總分 100 分
—，（1）試以 Laplace Transform 法求解 \(y^{\prime \prime}(x)+y(x)=1 ; y(0)=0, y(1)=1\) 。（ \(\mathbf{1 0 \%}\) ）
（2）已知 \(f(t)\) 爲一無穿滤減函數如圖所示，
試求 \(f(t)\) 之 Laplace Transform \(L[f(t)] \circ\)（註：答案須化成最簡型式）（ \(\mathbf{1 0 \%}\) ）


二，試解一階微分方程：\(y^{\prime}(x)=\frac{x-y+2}{x-y+3} \circ(15 \%)\)
三，一巫面曲線 \(C\) 之方程式爲 \(x^{2}+\frac{y^{2}}{4}=4 ; \underline{y>0}\) ，已知曲線 \(C\) 之一切線恰好通過座標爲 \((4,0)\) 之 P 點，試求此切線方程式及切點座標。（ \(15 \%\) ）

四，已知方陣 A 爲
\(A=\left[\begin{array}{ccc}0.8 & 0.2 & 0 \\ 0.2 & 0.6 & 0.2 \\ 0 & 0.2 & 0.8\end{array}\right]\)
（1）寫出特徵多項式（1\％）
（2）求特徵値及特徵向量（5\％）
（3）將該方陣做對角化之分解（2\％）
（4）求出 \(A^{\infty}(5 \%)\)
（5）求此方陣的行列式（2\％）
五，考慮以下二階常微分方程式
（1）求 \(y^{\prime \prime}+y^{\prime}+y=x\) 之通解（5\％）
（2）試解初始値問題 \(y^{\prime \prime}+2 y^{\prime}+y=1 ; y(0)=1, y^{\prime}(0)=2(7 \%)\)
（3）以上二微分方程式爲過阻尼，欠阻尼或臨界阻尼？請說明之（3\％）
六，考慮以下定義於 \([0, \pi]\) 區間的函數
\(f(x)= \begin{cases}0 & 1 \leq x \leq \pi \\ 1 & 0 \leq x<1\end{cases}\)
（1）求此函數之傅立葉正弦級數（Fourier sine series）（6\％）
（2）求此函數之傅立葉餘弦級數（Fourier cosine series）（6\％）
（3）試分別求（1）與（2）所得到的級數，在 \(x=0\) 及 \(x=\pi\) 之收斂値？（5\％）
（4）若針對此函數在 \([0, \pi]\) 區間作微分，產生出的函數之傅立葉級數是否一定存在？針對此函數在 \([0, \pi]\) 區間作積分，產生出的函數之傅立葉級數是否一定存在？請說明之（3\％）


\section*{國立台滋科技大學九十六學年度碩士班招生試題}

系所組別：營建工程系碩士班乙組，丙組，戊組
科 目：工程數學

注意：本試題總分 100 分
—，試解下列初始値問題之解 \(y(x)\) 。（ \(15 \%\) ）
\[
y^{\prime}(x)+y(x) \tan x=\sin (2 x) ; \quad y(0)=1 。
\]

二，令承數 \(f(t)\) 之 Laplace Transform 運算可表爲 \(L[f(t)]=F(s)\) ，
且其逆轉換（Inverse Laplace Transform）運算表爲 \(L^{-1}[F(s)]=f(t) \circ\)
（1）試求 \(L^{-1}\left[\frac{1}{s\left(s^{2}+1\right)}\right]\) 。
（2）試求 \(L^{-1}\left[\frac{s}{s+2}\right]\) 。
（3）試求 \(L^{-1}[\ln (s)]\) 。
（4）試以 Laplace Transform 解 \(y^{\prime}(t)+y(t)=1 ; y(0)=0, t \geq 0\)（註：其他方法不予計分）\({ }^{(5 \%)}\)

三，已知一曲線 \(C\) 之參數表示爲 \(C: x(t)=2 \cos (t), y(t)=2 \sin (t), z=2,0 \leq t \leq \frac{\pi}{2}\) ，
且此曲線之質量密度函數（mass density function）爲 \(\rho(x, y, z)=x y(\mathrm{~g} / \mathrm{cm})\) ，
（1）試以 \(x-y-z\) 之三軸空間圖，概繪曲線 \(C\) 。
（2）試求曲線 \(C\) 之總質量 \(m\) 。
（3）試求曲線 \(C\) 之質量中心 \((\bar{x}, \bar{y}, \bar{z})\) 。

四，考慮以下單自由度系統
\(m y^{\prime \prime}(t)+c y^{\prime}(t)+k y(t)=f(t)\)
其中質量 \(m=10 \mathrm{~kg}\) ，彈力係數 \(k=40 \mathrm{~N} / \mathrm{m}\) 。回答下列問題：
（1）若阻尼係數 \(c=10 \mathrm{~N} \cdot\) second \(/ \mathrm{m}\) ，請問該系統之阻尼比（＝阻尼／臨界阻尼）爲多少？此爲過阻尼或欠阳尼系統？（3\％）
（2）若阻尼係數 \(c=10 \mathrm{~N} \cdot \operatorname{second} / \mathrm{m}\) ，且無外力作用 \(f(t)=0\) ，在 \(y(0)=1, y^{\prime}(0)=0\) 之初始狀態下，系統之反應 \(y(t)\) 爲何？（ \(9 \%\) ）
（3）若阻尼係數 \(c=0 \mathrm{~N} \cdot \mathrm{sec} \mathrm{nd} / \mathrm{m}\) ，請問該系統之共振頻率爲何（請註明單位）？（3\％）

\section*{國立台灤科技大學九十六學年度碩士班招生試題}

系所組別：營建工程系碩士班乙組，丙組，戊組
科 目：工程數學

\section*{五，考慮以下方陣}
\(A=\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right]\)
（1）求此方陣之所有固有値（eigenvalue）與相對應之固有向量（eigenvector）\(\circ(10 \%\) ）
（2）若 \(B=U^{-1} A U\) ，其中 \(U\) 爲任意的非奇異（non－singular）的 \(3 \times 3\) 方陣，請問 \(B\) 方陣之行列式 （determinant）是多少？B 方陣對角線之總和是多少？（ \(6 \%\) ）
（3）若 \(B=U A U^{T}\) ，其中 \(U\) 爲任意 \(2 \times 3\) 方陣且 \(U\) 的秩（rank）爲 2 ，\(U^{T}\) 爲 \(U\) 之轉置矩陣，請問 \(B\) 方陣之秩是多少？（2\％）

六，\(f(t)\) 函數之傅立葉轉換（Fourier transform）定義爲 \(\quad F(\omega)=\int_{-\infty}^{\infty} f(t) \cdot e^{-i \omega t} d t\)考慮以下微分方程式
\(y^{\prime}(t)+2 y(t)=g(t)\)
（1）若 \(g(t)=\delta(t)(\delta(t)\) 是德瑞克函數 Dirac Delta function），請以傅立葉正轉換與反轉換求出系統之反應 \(y(t) \cdot(7 \%)\)
（2）若 \(g(t)=e^{-t} H(t)\left(H(t)\right.\) 是 Heaviside 函數），系統之反應 \(y(t)\) 等於 \(e^{-t} H(t)\) 與某一函數 \(R(t)\) 之摺積 （convolution），請問此 \(R(t)\) 函數爲何？（ \(5 \%\) ）
（3）若 \(g(t)=e^{t} H(t)\) ，請問系統反應 \(y(t)\) 之傅立葉轉換 \(Y(\omega)\) 爲何？（5\％）

\section*{國立台灣科技大學九十七學年度碩士班招生試題}

系所組別：營建工程系碩士班乙組，丙組，戊組科 目：工程数學

注意：本試題總分 100 分
一，一微分方程式爲 \(3 y^{4}-1+12 x y^{3} \frac{d y}{d x}=0\) 。
（1）試判斷其是否爲正合方程式（Exact Differential Equation）。（5\％）
（2）令 \(y(2)=1\) ，試根據 \((1)\) 之結果求微分方程式之解 \(y(x)\) 。 \((10 \%)\)

二，令函數 \(f(t)\) 之 Laplace Transform 運算可表爲 \(L[f(t)]=F(s)\) ，
且其逆轉換（Inverse Laplace Transform）運算爲 \(L^{-1}[F(s)]=f(t)\) 。
（1）令 \(f(t)=\left\{\begin{array}{r}0 ; t<2 \\ (t-1)^{2} ; t \geq 2\end{array}\right.\) ，試求 \(L[f(t)]\) 。
（2）試以 Laplace Transform 求解 \(y^{\prime \prime \prime}(t)+3 y^{\prime \prime}(t)+3 y^{\prime}(t)+y(t)=\delta(t)\) ；其中 \(\delta(t)\) 峩 Dirac delta function \(\cdot y(0)=y^{\prime}(0)=y^{\prime \prime}(0)=0, t \geq 0\)（註：其他方法不予計分）。 \((7 \%)\)

三• \(-3-\mathrm{D}\) 向量場爲 \(\mathrm{F}=-2 x \mathbf{i}-z e^{x} \mathbf{j}+(2 z-1) \mathbf{k}\)
（1）試求 \(\mathbf{F}\) 之 divergence \(\nabla \bullet \mathbf{F}\) 。（5\％）
（2）試求 \(\mathbf{F}\) 之 \(\operatorname{curl} \nabla \times \mathbf{F} \cdot(5 \%)\)
（3）試求面積分 \(I=\iint_{\Sigma} \mathbf{F} \cdot \mathbf{N} d \sigma\) 之値，其中 \(\Sigma\) 爲圖中金字塔上部 4 個斜面 （即面 AED，面 DEC，面 CEB，面 BEA 之組合）， \(\mathbf{N}\) 爲各斜面之朝外單位法向量•（10\％）


國立台灣科技大學九十七學年度碩士班招生試題
系所組別：營建工程系碩士班乙組，丙組，戊組
科 目：工程数學

四，
（1）A 爲一個 \(2 \times 2\) 矩陣，若已知 \(A\) 滿足
\(A \cdot\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{l}4 \\ 2\end{array}\right]\)
請列舉 A 的一個特徵向量，並声問該特徴向量之特徵値是多少？（5\％）
（2）同四（1）小題中之 A矩陣，請問 \([-4-2]^{\top}\) 是否爲 A 之特徵向量？若是，請問其特徵値是多少？
若不是，請說明爲什麼？（5\％）
（3）已知 B 矩陣之特徵向量是 \([11]^{\top}\) 與 \([1-1]^{\top}\) ，且相對應之特徵値分別爲 1 與 2 ，試求 \(B\) 矩陣？

\section*{（7\％）}
（4）若
\(C=\left[\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right]\)
其中 \(\alpha+\gamma=1\) 且 \(\beta+\delta=1\) ，試證明數字＂ 1 ＂必爲 C 矩陣的一個特徵値。（ \(6 \%\) ）
五•
（1）若 \(f(x)\) 爲以下函數
\(f(x)=\left\{\begin{array}{cc}-1 & -\pi \leq x<0 \\ 1 & 0 \leq x \leq \pi \\ 0 & |x|>\pi\end{array}\right.\)
試以傅立葉級數 \((\) Fourier series）在 \([-\pi, \pi]\) ］⿷匚⿱口⿰口口山間中展開 \(f(x)\) 函數。 \((8 \%)\)
（2）在題五 \((1)\) 中的傅立葉級數稱爲 \(g(x)\) ，試問 \(g(0)=?, g(\pi)=?, g(0)\) 是否與 \(f(0)\) 相等 \(? g(\pi)\)是否與 \(f(\pi)\) 相等？爲什麼？（ \(7 \%\) ）

六，
（1）若一動態系統之反應 \(y(t)\) 滿足
\[
y^{\prime \prime}(t)+9 y(t)=f(t)
\]

其中 \(t\) 是時間，而 \(f(t)\) 是系統的輸入，請問該系統之共振頻率（單位 Hz ）？（ \(5 \%\) ）
（2）同六（1），試問當 \(f(t)\) 爲以下之那些函數時，會發生共振現象？可能單選或複選。（7\％）
A．\(f(t)=\sin (9 t)\)
B．\(f(t)=\cos (3 t)\)
C．\(f(t)=e^{-3 t}\)
D．\(f(t)=e^{-3 n} \quad(i=\sqrt{-1})\)```

