跳到主要内容
中華大學開放式課程
停靠面板
您正在用访客帐号访问 (
登录
)
输入搜索条件
简体中文 (zh_cn)
简体中文 (zh_cn)
正體中文 (zh_tw)
English (en)
工程數學(二)
首页
课程
工程數學(二)
提要101~150:教學影片+教學講義
★【新教學影片】提要149:函數 t² 之 Laplace 積分轉換
★【新教學影片】提要149:函數 t² 之 Laplace 積分轉換
kAQQkCbCIXk
★【新教學影片】提要149:函數 t² 之 Laplace 積分轉換
◄ 【教學影片】提要149:函數 t² 之 Laplace 積分轉換
跳至...
跳至...
公佈欄
【工程數學(一)-融會貫通】歡迎選修免費的磨課師課程
【教學影片】提要101:認識何謂冪級數(Power Series)?
【教學講義】提要101:認識何謂冪級數(Power Series)?
【教學影片】提要102:認識Maclaurin級數
【教學講義】提要102:認識Maclaurin級數
【教學影片】提要103:認識幾何級數(Geometric Series)
【教學講義】提要103:認識幾何級數(Geometric Series)
【教學影片】提要104:一階ODE之冪級數解法 (Solve y' – y = 0)
★【新教學影片】提要104:一階ODE之冪級數解法 (Solve y' = xy)
★【新教學影片】提要104:一階ODE之冪級數解法 (Solve y' = 2xy)
【教學講義】提要104:一階ODE之冪級數解法
【教學影片】提要105:二階ODE之冪級數解法 (Solve y" + y = 0)
★【新教學影片】提要105:二階ODE之冪級數解法 (Solve y" + y = 0)
★【新教學影片】提要105:二階ODE之冪級數解法 (Solve y" – y = 0)
【教學講義】提要105:二階ODE之冪級數解法
【教學影片】提要106:認識級數解法之專有名詞
【教學講義】提要106:認識級數解法之專有名詞
【教學影片】提要107:認識級數解之收斂半徑的解法(一) (試求級數之收斂半徑 Σ[(-1)ᵐ/8ᵐ]x³ᵐ,其中m = 0, 1, 2, …)
★【新教學影片】提要107:認識級數解之收斂半徑的解法(一) (試求級數之收斂半徑 Σ[(-1)ᵐ/27ᵐ]x³ᵐ,其中m = 0, 1, 2, …)
★【新教學影片】提要107:認識級數解之收斂半徑的解法(一) (試求級數之收斂半徑 Σ[(-1)ᵐ/4ᵐ]x²ᵐ,其中m = 0, 1, 2, …)
【教學講義】提要107:認識級數解之收斂半徑的解法(一)
【教學影片】提要108:認識級數解之收斂半徑的解法(二)
【教學講義】提要108:認識級數解之收斂半徑的解法(二)
【教學影片】提要109:級數之下標平移原則
【教學講義】提要109:級數之下標平移原則
【教學影片】提要110:冪級數解之運算規則
【教學講義】提要110:冪級數解之運算規則
【教學影片】提要111:冪級數解之存在性定理
【教學講義】提要111:冪級數解之存在性定理
【教學影片】提要112:實數解析函數之定義
【教學講義】提要112:實數解析函數之定義
【教學影片】提要113:Legendre方程式之定義
【教學講義】提要113:Legendre方程式之定義
【教學影片】提要114:那一類問題與Legendre方程式有關?
【教學講義】提要114:那一類問題與Legendre方程式有關?
【教學影片】提要115:Legendre方程式的解析
【教學講義】提要115:Legendre方程式的解析
【教學影片】提要116:Legendre多項式Pn(x)的推導
【教學講義】提要116:Legendre多項式Pn(x)的推導
【教學影片】提要117:與Legendre多項式Pn(x)有關之公式
【教學講義】提要117:與Legendre多項式Pn(x)有關之公式
【教學影片】提要118:Frobenius解法簡介 (Solve (x² – x)y'' – xy' + y = 0)
★【新教學影片】提要118:Frobenius解法簡介 (Solve (x² + x)y'' – 2xy' + y = 0)
★【新教學影片】提要118:Frobenius解法簡介 (Solve (x² – x)y'' – xy' + y = 0)
【教學講義】提要118:Frobenius解法簡介
【教學影片】提要119:正規點與奇異點之定義
【教學講義】提要119:正規點與奇異點之定義
【教學影片】提要120:Indicial方程式的推導
【教學講義】提要120:Indicial方程式的推導
【教學影片】提要121:Frobenius解法之案例1 -- 兩根相異且相減不等於整數
【教學講義】提要121:Frobenius解法之案例1 -- 兩根相異且相減不等於整數
【教學影片】提要122:Frobenius解法之案例2 -- 兩根相同
🏆【2018教育部教學實踐研究計畫】(4K) 2018中央:Solve x(x – 1)y’’ + (3x – 1)y’ + y = 0, 已知y₁ = 1/(1 – x), 求y₂ 🔴提要122
【教學講義】提要122:Frobenius解法之案例2 -- 兩根相同
【教學影片】提要123:Frobenius解法之案例3(a) -- 兩根相異但相減等於整數(通解中不含 ln x)
【教學講義】提要123:Frobenius解法之案例3(a) -- 兩根相異但相減等於整數(通解中不含 ln x)
【教學影片】提要124:Frobenius解法之案例3(b) -- 兩根相異且相減等於整數(通解中會出現 ln x)
【教學講義】提要124:Frobenius解法之案例3(b) -- 兩根相異且相減等於整數(通解中會出現 ln x)
【教學影片】提要125:貝色方程式(Bessel Equation)之定義
【教學講義】提要125:貝色方程式(Bessel Equation)之定義
【教學影片】提要126:那一類問題與貝色方程式(Bessel Equation)有關?
【教學講義】提要126:那一類問題與貝色方程式(Bessel Equation)有關?
【教學影片】提要127:貝色方程式(Bessel Equation)所對應之Indicial方程式
【教學講義】提要127:貝色方程式(Bessel Equation)所對應之Indicial方程式
【教學影片】提要128:Frobenius解法在Bessel方程式的應用之案例1 -- 兩根相異且相減不等於整數
【教學講義】提要128:Frobenius解法在Bessel方程式的應用之案例1 -- 兩根相異且相減不等於整數
【教學影片】提要129:Frobenius解法在Bessel方程式的應用之案例2 -- 兩根均為0(通解中會出現 ln x)
【教學講義】提要129:Frobenius解法在Bessel方程式的應用之案例2 -- 兩根均為0(通解中會出現 ln x)
【教學影片】提要130:Frobenius解法在Bessel方程式的應用之案例3 -- 兩根相異但相減等於整數(通解中不含 ln x)
【教學講義】提要130:Frobenius解法在Bessel方程式的應用之案例3 -- 兩根相異但相減等於整數(通解中不含 ln x)
【教學影片】提要131:Gamma函數之定義
【教學講義】提要131:Gamma函數之定義
【教學影片】提要132:Gamma函數之函數值及其特殊關係
【教學講義】提要132:Gamma函數之函數值及其特殊關係
【教學影片】提要133:各種類型之Bessel函數的定義
【教學講義】提要133:各種類型之Bessel函數的定義
【教學影片】提要134:貝色方程式(Bessel Equation)之通解
【教學講義】提要134:貝色方程式(Bessel Equation)之通解
【教學影片】提要135:Bessel函數之基本微分關係式
【教學講義】提要135:Bessel函數之基本微分關係式
【教學影片】提要136:貝色函數(Bessel Function)之各種基本關係式
【教學講義】提要136:貝色函數(Bessel Function)之各種基本關係式
【教學影片】提要137:Hankel轉換之定義
【教學講義】提要137:Hankel轉換之定義
【教學影片】提要138:與Fourier-Bessel級數有關之基本積分式
【教學講義】提要138:與Fourier-Bessel級數有關之基本積分式
【教學影片】提要139:與Bessel函數有關之基本積分式
【教學講義】提要139:與Bessel函數有關之基本積分式
【教學影片】提要140:與Bessel函數有關之進階積分式
【教學講義】提要140:與Bessel函數有關之進階積分式
【教學影片】提要141:Hankel轉換之應用
【教學講義】提要141:Hankel轉換之應用
【教學影片】提要142:Laplace積分轉換與反轉換之定義的由來
★【新教學影片】提要142:Laplace積分轉換與反轉換之定義的由來(6-1)
★【新教學影片】提要142:Laplace積分轉換與反轉換之定義的由來(6-2)
★【新教學影片】提要142:Laplace積分轉換與反轉換之定義的由來(6-3)
★【新教學影片】提要142:Laplace積分轉換與反轉換之定義的由來(6-4)
★【新教學影片】提要142:Laplace積分轉換與反轉換之定義的由來(6-5)
★【新教學影片】提要142:Laplace積分轉換與反轉換之定義的由來(6-6)
【教學講義】提要142:Laplace積分轉換與反轉換之定義的由來
【教學影片】提要143:Laplace積分轉換方法的主要用途
★【新教學影片】提要143:Laplace積分轉換方法的主要用途(2-1)
★【新教學影片】提要143:Laplace積分轉換方法的主要用途(2-2)
🏆【2018教育部教學實踐研究計畫】(4K) 2017台大:Solve y’’ + 16y = cos(4t), y(0) = 0, y’(0) = 1 🔴提要143
🏆【2018教育部教學實踐研究計畫】(4K) 2017交大:Solve y’’ + 2y’ + 10y = 3 cos(5t), y(0) = 0, y’(0) = 0 🔴提要143
🏆【2018教育部教學實踐研究計畫】(4K) 2018中央:Solve y’’ + 2y’ + 2y = 4 cos t, y(0) = 0, y’(0) = 0 🔴提要143
🏆【2018教育部教學實踐研究計畫】(4K) 2018交大:Solve y’’ + 3y’ + 2y = sin(2t), y(0) = 2, y’(0) = ‒1 🔴提要143
🏆【2018教育部教學實踐研究計畫】(4K) 2014中正:Solve y’’ – 3y’ + 2y = 12 exp(–2t), y(0) = 2, y’(0) = 6 🔴提要143
🏆【2018教育部教學實踐研究計畫】(4K) 2014中興:Solve x’’+3y’+3y=0, x’’+3y=t exp(–t), x(0)=0, x’(0)=2, y(0)=0 🔴提要143
🏆【2018教育部教學實踐研究計畫】(4K) 2014中興:Solve y’’ – y’ – 2y = 10 sin x, y(0) = 1, y’(0) = 0 🔴提要143
🏆【2018教育部教學實踐研究計畫】(4K) 2014台科大:Solve L{f(t)}, f(t)=2t‒sint for 0 ≦ t<π, f(t)=0 for t ≧ π 🔴提要143
【教學講義】提要143:Laplace積分轉換方法的主要用途
【教學影片】提要144:應用Laplace積分轉換方法時所可能遭遇的瓶頸
【教學講義】提要144:應用Laplace積分轉換方法時所可能遭遇的瓶頸
【教學影片】提要145:Laplace積分轉換方法與複變分析有什麼關係?
【教學講義】提要145:Laplace積分轉換方法與複變分析有什麼關係?
【教學影片】提要146:Laplace積分轉換之存在性定理與線性相加定理
【教學講義】提要146:Laplace積分轉換之存在性定理與線性相加定理
【教學影片】提要147:常數 1 之Laplace積分轉換
★【新教學影片】提要147:常數 1 之Laplace積分轉換
【教學講義】提要147:常數 1 之Laplace積分轉換
【教學影片】提要148:函數 t 之Laplace積分轉換
★【新教學影片】提要148:函數 t 之Laplace積分轉換
【教學講義】提要148:函數 t 之Laplace積分轉換
【教學影片】提要149:函數 t² 之 Laplace 積分轉換
【教學講義】提要149:函數 t² 之 Laplace 積分轉換
【教學影片】提要150:函數 tⁿ 之 Laplace 積分轉換
★【新教學影片】提要150:函數 tⁿ 之 Laplace 積分轉換(2-1)
★【新教學影片】提要150:函數 tⁿ 之 Laplace 積分轉換(2-2)
【教學講義】提要150:函數 tⁿ 之 Laplace 積分轉換
【教學影片】提要151:函數 exp(at) 之Laplace積分轉換
★【新教學影片】提要151:函數 exp(at) 之Laplace積分轉換
【教學講義】提要151:函數 exp(at) 之Laplace積分轉換
【教學影片】提要152:函數 cosh(at) 之Laplace積分轉換
★【新教學影片】提要152:函數 cosh(at) 之Laplace積分轉換
【教學講義】提要152:函數 cosh(at) 之Laplace積分轉換
【教學影片】提要153:函數 sinh(at) 之Laplace積分轉換
★【新教學影片】提要153:函數 sinh(at) 之Laplace積分轉換
【教學講義】提要153:函數 sinh(at) 之Laplace積分轉換
【教學影片】提要154:函數 cos(at) 之Laplace積分轉換
★【新教學影片】提要154:函數 cos(at) 之Laplace積分轉換
【教學講義】提要154:函數 cos(at) 之Laplace積分轉換
【教學影片】提要155:函數 sin(at) 之Laplace積分轉換
★【新教學影片】提要155:函數 sin(at) 之Laplace積分轉換
【教學講義】提要155:函數 sin(at) 之Laplace積分轉換
【教學影片】提要156:函數 f'(t) 之Laplace積分轉換
★【新教學影片】提要156:函數 f'(t) 之Laplace積分轉換
🏆【2018教育部教學實踐研究計畫】(4K) 2018交大:Show that L{f’(t)} = sF(s) ‒ f(0), where F(s) = L{f(t)} 🔴提要156
【教學講義】提要156:函數 f'(t) 之Laplace積分轉換
【教學影片】提要157:函數 f"(t) 之Laplace積分轉換
★【新教學影片】提要157:函數 f"(t) 之Laplace積分轉換
【教學講義】提要157:函數 f"(t) 之Laplace積分轉換
【教學影片】提要158:函數 f(t) 之 n 次微分的Laplace積分轉換
【教學講義】提要158:函數 f(t) 之 n 次微分的Laplace積分轉換
【教學影片】提要159:單位階梯函數 u(t - a) 之Laplace積分轉換
★【新教學影片】提要159:單位階梯函數 u(t - a) 之Laplace積分轉換
【教學講義】提要159:單位階梯函數 u(t - a) 之Laplace積分轉換
【教學影片】提要160:單位脈衝函數之Laplace積分轉換
★【新教學影片】提要160:單位脈衝函數之Laplace積分轉換
【教學講義】提要160:單位脈衝函數之Laplace積分轉換
【教學影片】提要161:函數 exp(at)*f(t) 之Laplace積分轉換
★【新教學影片】提要161:函數 exp(at)*f(t) 之Laplace積分轉換
🏆【2018教育部教學實踐研究計畫】(4K) 2017中興:Solve L{t³ + t² e⁻² + exp(2t) sin t} 🔴提要161
🏆【2018教育部教學實踐研究計畫】(4K) 2017台大:Solve L⁻¹{(6s + 7)/(2s² + 4s + 10)} 🔴提要161
🏆【2018教育部教學實踐研究計畫】(4K) 2014中興:Solve L{ t – t² + t³/2! – t⁴/3! + ... } 🔴提要161
🏆【2018教育部教學實踐研究計畫】(4K) 2017台大:Solve L⁻¹{ (s + 1)/[(s + 1)² + 9] } 🔴提要161
【教學講義】提要161:函數 exp(at)*f(t) 之Laplace積分轉換
【教學影片】提要162:函數 f(t - a)u(t - a) 之Laplace積分轉換
★【新教學影片】提要162:函數 f(t - a)u(t - a) 之Laplace積分轉換
🏆【2018教育部教學實踐研究計畫】(4K) 2014中興:Solve L⁻¹{ [(s – 2)/(s – 3)] exp(– s) } 🔴提要162
🏆【2018教育部教學實踐研究計畫】(4K) 2014台科大:Solve L⁻¹{ 4 exp(– 3s)/(s² + 4s + 20) } 🔴提要162
🏆【2018教育部教學實踐研究計畫】(4K) 2014中央:Solve L⁻¹{ exp(– 6s)/[ s(s² + s + 1) ] } 🔴提要162
【教學講義】提要162:函數 f(t - a)u(t - a) 之Laplace積分轉換
【教學影片】提要163:迴積分定理(Convolution Theorem)
★【新教學影片】提要163:迴積分定理(Convolution Theorem) (2-1)
★【新教學影片】提要163:迴積分定理(Convolution Theorem) (2-2)
🏆【2018教育部教學實踐研究計畫】(4K) 2018台大:Solve y’’ + 2y’ + 2y = f(t), y(0) = 0, y’(0) = 0 🔴提要163
🏆【2018教育部教學實踐研究計畫】(4K) 2018台大:Solve y’’ + 4y’ + 4y = g(t), y(0) = 2, y’(0) = ‒3 🔴提要163
🏆【2018教育部教學實踐研究計畫】(4K) 2018台大:Solve y(x) = x³ + ∫{sin(x ‒ t)*y(t)}dt, 積分上限為 x, 下限為 0 🔴提要163
🏆【2018教育部教學實踐研究計畫】(4K) 2018成大:Solve f(t) = t exp(t) + ∫τ f(t ‒ τ)dτ, 積分上限為 t, 下限為 0 🔴提要163
🏆【2018教育部教學實踐研究計畫】(4K) 2014台科大:Solve f(t) = t² + ∫ f(t ‒ τ) exp(‒τ)dτ, 積分上限為 t, 下限為 0 🔴提要163
🏆【2018教育部教學實踐研究計畫】(4K) 2014中央:Solve y’(t) = 1 ‒ exp(‒2t)∫ y(τ) exp(2τ)dτ, 積分上限為 t, 下限為 0 🔴提要163
【教學講義】提要163:迴積分定理(Convolution Theorem)
【教學影片】提要164:函數 tf(t) 之Laplace積分轉換
【教學講義】提要164:函數 tf(t) 之Laplace積分轉換
【教學影片】提要165:函數 tf'(t) 之Laplace積分轉換
【教學講義】提要165:函數 tf'(t) 之Laplace積分轉換
【教學影片】提要166:函數 tf"(t) 之Laplace積分轉換
【教學講義】提要166:函數 tf"(t) 之Laplace積分轉換
【教學影片】提要167:函數 f(t)/t 之Laplace積分轉換
【教學講義】提要167:函數 f(t)/t 之Laplace積分轉換
【教學影片】提要168:Laplace積分轉換公式整理
【教學講義】提要168:Laplace積分轉換公式整理
【教學影片】提要169:Leibnitz 定則之證明
【教學講義】提要169:Leibnitz 定則之證明
【教學影片】提要170:Leibnitz 定則之應用
【教學講義】提要170:Leibnitz 定則之應用
【教學影片】提要171:單位階梯函數 u(t - a) 在工程上的應用
【教學講義】提要171:單位階梯函數 u(t - a) 在工程上的應用
【教學影片】提要172:單位脈衝函數在工程上的應用
【教學講義】提要172:單位脈衝函數在工程上的應用
【教學影片】提要173:包含單位階梯函數之數學模式的解(I)
【教學講義】提要173:包含單位階梯函數之數學模式的解(I)
【教學影片】提要174:包含單位階梯函數之數學模式的解(II)
🏆【2018教育部教學實踐研究計畫】(4K) 2017交大:Solve y’’+2y=f(t), y(0)=y’(0)=0, f(t)=1 for 0<t<1; f(t)=0 ... 🔴提要174
🏆【2018教育部教學實踐研究計畫】(4K) 2018清大:Solve y’’+4y’+6y=f(t), y(0)=1, y’(0)=–1, f(t)=2 for 1≦t<2 ... 🔴提要174
【教學講義】提要174:包含單位階梯函數之數學模式的解(II)
【教學影片】提要175:包含單位脈衝函數之數學模式的解
🏆【2018教育部教學實踐研究計畫】(4K) 2018台大:Solve y’’ + 2y’ + 2y = δ(t), y(0) = y’(0) = 0 🔴提要175
🏆【2018教育部教學實踐研究計畫】(4K) 2014中興:Solve y’’ + 2y’ + 2y = δ(t), y(0) = 0, y’(0) = 0 🔴提要175
🏆【2018教育部教學實踐研究計畫】(4K) 2014台科大:Solve y’’ + 4y = δ(t), y(0) = y’(0) = 0 🔴提要175
【教學講義】提要175:包含單位脈衝函數之數學模式的解
【教學影片】提要176:Laplace轉換公式 L{tf(t)} = - dF(s)/ds 的應用(I)
🏆【2018教育部教學實踐研究計畫】(4K) 2017台大:Find the Laplace transform for y(t) = t² sin 3t 🔴提要176
【教學講義】提要176:Laplace轉換公式 L{tf(t)} = - dF(s)/ds 的應用(I)
【教學影片】提要177:Laplace轉換公式 L{tf(t)} = - dF(s)/ds 的應用(II)
🏆【2018教育部教學實踐研究計畫】(4K) 2014台科大:Find the Laplace transform of t exp(t) cos(3t) 🔴提要177
【教學講義】提要177:Laplace轉換公式 L{tf(t)} = - dF(s)/ds 的應用(II)
【教學影片】提要178:週期為 p 之函數 f(t) 的 Laplace 積分轉換
【教學講義】提要178:週期為 p 之函數 f(t) 的 Laplace 積分轉換
【教學影片】提要179:週期為 p 之函數 f(t) 的Laplace積分轉換的應用
【教學講義】提要179:週期為 p 之函數 f(t) 的Laplace積分轉換的應用
【教學影片】提要180:函數 f'(t) 與 f"(t) 之Laplace積分轉換公式的應用
【教學講義】提要180:函數 f'(t) 與 f"(t) 之Laplace積分轉換公式的應用
【教學影片】提要181:函數 f(t) 之 n 次微分的Laplace積分轉換公式的應用
【教學講義】提要181:函數 f(t) 之 n 次微分的Laplace積分轉換公式的應用
【教學影片】提要182:應用Laplace轉換方法解析聯立常微分方程式
🏆【2018教育部教學實踐研究計畫】(4K) 2017交大:Solve y₁’ = ‒ 8y₁ ‒ 2y₂, y₂’ = 2y₁ ‒ 4y₂ 🔴提要182
🏆【2018教育部教學實踐研究計畫】(4K) 2018交大:Solve 2x’’+6x‒2y=0, y’’‒2x+2y=1, x(0)=x’(0)=y(0)=y’(0)=0 🔴提要182
🏆【2018教育部教學實踐研究計畫】(4K) 2014台科大:Solve x’’‒2x’+3y’+2y=8, 3y+2y’‒x’=0, x(0)=x’(0)=y(0)=0 🔴提要182
🏆【2018教育部教學實踐研究計畫】(4K) 2014成大:Solve x’=2x+y+exp(‒t), y’=x+2y, x(0)=y(0)=1 🔴提要182
【教學講義】提要182:應用Laplace轉換方法解析聯立常微分方程式
【教學影片】提要183:題目給 t 不等於 0 之初始條件時的Laplace積分轉換的解析
【教學講義】提要183:題目給 t 不等於 0 之初始條件時的Laplace積分轉換的解析
【教學影片】提要184:Laplace反轉換的挑戰 -- 迴積分定理的應用
【教學講義】提要184:Laplace反轉換的挑戰 -- 迴積分定理的應用
【教學影片】提要185:Laplace積分轉換方法與傳統解法的比較
【教學講義】提要185:Laplace積分轉換方法與傳統解法的比較
【教學影片】提要186:學習線性代數的目的
【教學講義】提要186:學習線性代數的目的
【教學影片】提要187:線性代數的專有名詞
【教學講義】提要187:線性代數的專有名詞
【教學影片】提要188:矩陣之加法的運算規則
【教學講義】提要188:矩陣之加法的運算規則
【教學影片】提要189:矩陣之乘法的運算規則
【教學講義】提要189:矩陣之乘法的運算規則
【教學影片】提要190:矩陣之純量乘積的運算規則
【教學講義】提要190:矩陣之純量乘積的運算規則
【教學影片】提要191:以高斯消去法解析聯立線性之代數方程式
【教學講義】提要191:以高斯消去法解析聯立線性之代數方程式
【教學影片】提要192:以高斯-喬登消去法求反矩陣
★【新教學影片】提要192:以高斯-喬登消去法求反矩陣(4-1)
★【新教學影片】提要192:以高斯-喬登消去法求反矩陣(4-2)
★【新教學影片】提要192:以高斯-喬登消去法求反矩陣(4-3)
★【新教學影片】提要192:以高斯-喬登消去法求反矩陣(4-4)
🏆【2018教育部教學實踐研究計畫】(4K) 2014中興:試求 3x3 之上三角矩陣的反矩陣 🔴提要192
🏆【2018教育部教學實踐研究計畫】(4K) 2014中興:試求 3x3 矩陣之反矩陣 🔴提要192
🏆【2018教育部教學實踐研究計畫】(4K) 2014中興:試解聯立之代數方程式 AX = b 🔴提要192
【教學講義】提要192:以高斯-喬登消去法求反矩陣
【教學影片】提要193:以伴隨矩陣法求反矩陣
★【新教學影片】提要193:以伴隨矩陣法求反矩陣(2-1)
★【新教學影片】提要193:以伴隨矩陣法求反矩陣(2-2)
【教學講義】提要193:以伴隨矩陣法求反矩陣
【教學影片】提要194:行列式的計算(共7個範例:Solve … (7) det[a₁ a₂ a₃ a₄]ᵀ, in which a₁ = [–5 4 1 7], a₂ = [–9 3 2 –5], a₃ = [–2 0 –1 1], a₄ = [1 14 0 3])
★【新教學影片】提要194:行列式的計算 (Solve det[a₁ a₂ a₃ a₄]ᵀ, in which a₁ = [2 0 1 0], a₂ = [1 3 0 2], a₃ = [0 1 –2 1], a₄ = [4 0 1 1])
🏆【2018教育部教學實踐研究計畫】(4K) 2014台大:Find the value of the determinant of 4x4 matrix 🔴提要194
【教學講義】提要194:行列式的計算
【教學影片】提要195:行列式的基本性質
【教學講義】提要195:行列式的基本性質
【教學影片】提要196:矩陣的特徵根與特徵向量
【教學講義】提要196:矩陣的特徵根與特徵向量
【教學影片】提要197:矩陣的對角化
【教學講義】提要197:矩陣的對角化
【教學影片】提要198:矩陣 A 之 m 次方的計算方式
🏆【2018教育部教學實踐研究計畫】(4K) 2014台科大:試求矩陣 A 之 10 次方 🔴提要198
【教學講義】提要198:矩陣 A 之 m 次方的計算方式
【教學影片】提要199:矩陣的秩(Rank)
【教學講義】提要199:矩陣的秩(Rank)
【教學影片】提要200:以Cramer's Rule解析聯立之代數方程式
【教學講義】提要200:以Cramer's Rule解析聯立之代數方程式
第一類習題:級數解法
第二類習題:拉氏轉換
第三類習題:矩陣與行列式
【教學講義】提要149:函數 t² 之 Laplace 積分轉換 ►
工程數學(二)
常规
提要101~150:教學影片+教學講義
提要151~200:教學影片+教學講義
習題演習
首页
日程管理